Last edited by Fauzragore
Thursday, May 14, 2020 | History

3 edition of Flow behavior of polymers in porous media found in the catalog.

Flow behavior of polymers in porous media

S. K. Baijal

Flow behavior of polymers in porous media

by S. K. Baijal

  • 236 Want to read
  • 0 Currently reading

Published by PennWell in Tulsa, Okla .
Written in English

    Subjects:
  • Polymers.,
  • Porous materials.,
  • Permeability.

  • Edition Notes

    StatementS.K. Baijal.
    Classifications
    LC ClassificationsQD381.8 .B26 1982
    The Physical Object
    Paginationxi, 116 p. :
    Number of Pages116
    ID Numbers
    Open LibraryOL3481065M
    ISBN 10087814188X
    LC Control Number82000388
    OCLC/WorldCa8194825

    behavior compared to bulk flow. To account for these contrasting flow conditions, in-situ viscosity has been suggested to describe the fluid flow behavior of polymer solutions in porous media. In-situ viscosity is a macroscopic parameter that can be calculated using Darcy’s law for single-phase non-Newtonian fluids: = Δ (1). The flow of polymer solutions in porous media is often described using Darcy’s law with an apparent viscosity capturing the observed thinning or thickening effects.

    This study investigates the influence of mechanical degradation on flow properties of polymers in porous media. Mechanical degradation due to high shear forces may occur in the injection well and. The rheological behavior of the flow of polymer solution through porous media could be Newtonian at low flow rates, pseudoplastic at intermediate flow rates, and dilatant at high flow rates. The pseudoplastic behavior is modeled with the Blake-Kozeny model for power law model fluids.

    The porous matrix consisted of a flow cell packed with glass beads. Polymer solutions were characterized by viscosity and normal stress measurement. Under certain condition, unexpectedly high Row resistance was observed. This behavior was observed to be a function of flow rate, pore size, polymer molecular weight and concentration. The polymer Cited by: Effects of Polymer Adsorption and Flow Behavior on Two-Phase Flow in Porous Media To determine the effect of water-soluble polyacrylamide polymer adsorption and flow behavior on oil recovery, relative permeability and mobility were determined from flow experiments at various polymer concentrations. as polymer propagates through porous.


Share this book
You might also like
Lulu and the rabbit next door

Lulu and the rabbit next door

My brush with fortune

My brush with fortune

Report of the territorial auditor of Washington Territory.

Report of the territorial auditor of Washington Territory.

Applied mineralogy in research, economy, technology, ecology and culture

Applied mineralogy in research, economy, technology, ecology and culture

Craigmillars comprehensive plan for action

Craigmillars comprehensive plan for action

day with William Makepeace Thackeray

day with William Makepeace Thackeray

Henri Rousseau

Henri Rousseau

Influence of the twelfth amendment.

Influence of the twelfth amendment.

Hemoglobin disorders

Hemoglobin disorders

Health sciences, organizational and administrative techniques

Health sciences, organizational and administrative techniques

Buses on the continent 1898-1976

Buses on the continent 1898-1976

Progress in Drug Research Volume 4 (Progress in Drug Research)

Progress in Drug Research Volume 4 (Progress in Drug Research)

Flow behavior of polymers in porous media by S. K. Baijal Download PDF EPUB FB2

The flow of solutions of various polymers is examined with respect to the rheological properties of the solutions and the interaction of the polymers with porous media.

The mobility of some polymer solutions in porous media can be predicted reasonably well from a knowledge of the viscosity behavior, while the mobility of other polymer solutions is lower than that predicted from viscosity alone.

To understand flow behaviour of these two polymers in porous media, the role of hydrophobic association on shear and extensional rheology and its effect on the resistance factor (RF) and residual resistance factor in porous media are investigated over a non‐associating HPAM by: 4.

Polymer solution Flow behavior of polymers in porous media book in porous media is difficult to characterize and simulate due to the effect caused by the rheological behavior and physicochemical reaction. In this study, a mathematical model of viscoelastic polymer flooding for enhancing oil recovery is by:   The mechanical properties and flow behavior in porous media of three different polymer systems including a hydrophobically modified acrylamide-based copolymer (HMSPAM), a partially hydrolyzed polyacrylamide (HPAM), and a polysaccharide (xanthan gum) were evaluated to establish their functional differentiation as mobility control agents in enhanced oil recovery (EOR).Cited by: may exhibit shear thickening behavior above a certain critical flow rate, (IV) due to tortuosity of porous media and existence of several contraction-expansion channels, polymer solutions will be exposed to a wide range of shear rates at each flow rate, resulting in significantly different rheology behavior compared to bulk flow.

To account for these contrasting flow conditions, in-situ viscosity has been suggested to describe fluid flow behavior of polymer Author: Arne Skauge, Nematollah Zamani, Jørgen G. Gausdal Jacobsen, Behruz S. Shaker Shiran, Badar Al-Shakry. The Behavior of Polymers in Porous Media Authors H.J.

Hill (Shell Development Co.) | J.R. Brew (Shell In bead pack flow experiments, we found that degradation occurs at shear rates of about sec The polysaccharide solution was only slightly degraded by exposure to shear rates of ab sec These observations, if applicable Cited by: 7.

For porous media flows at low deformation rates, theoretical models for predicting both polymer velocity and effective viscosity of polymer solutions as a function of macromolecular conformation, macromolecule to pore size ratio, and polymer concentration are proposed and compared successfully to experimental results.

A novel flow model of viscoelastic polymer solution flowing in porous media is established and the degradation is also considered. The new model is more accurate to describe the rheological characteristics and flow characterization of viscoelastic polymer solution and should be useful for the analysis of mechanism associated with seepage of non-Newtonian fluids and by: 2.

The molecular mechanism for viscosity enhancement during the flow of poly (ethylene oxide) solutions through porous media has been investigated.

Random packed beds of uniform-size spheres have been used as porous media. Experiments were conducted for one-dimensional (uniform) flow, as well as for a particular three-dimensional (nonuniform) flow by:   The flow of this mixture in porous media was studied experimentally according to a specially developed framework.

That framework includes bulk, pore scale, as well as a core flood experiment. The bulk rheology of different XL polymer recipes was tested first to select a relevant recipe with a gelation time suitable for the core flood : N.

Lenchenkov, G. Glasbergen, C.P.J.W. van Kruijsdijk, C.P.J.W. van Kruijsdijk. The behavior of partially hydrolyzed polyacrylamide (HPAM) polymer solutions in porous media is more complicated than what the bulk rheology might suggest.

In addition, HPAM polymers exposed to high frontal velocities during corefloods display shear thickening and degradation by: Introduction The flow behaviour of polymer solutions in porous media can be explained by two distinct processes: Shear flow and Strain flow.

Accordingly the effective viscosity of the solution. Associative polymer (AP) and hydrolyzed polyacrylamide (HPAM), the two commonly used polymers for heavy oil recovery, are reported to exhibit very different flow behaviour in porous media despite.

Flow behavior in porous media. Many researchers have reported that (a) bulk flow apparent polymer viscosities do not effectively reflect the ones observed in experiments conducted in porous media and (b) noted the occurrence of both shear thickening and degradation flow by: Dilute solutions of high molecular weight linear polymers are shown to exhibit Newtonian behavior in capillary tube flow but to be highly non-Newtonian in that they offer a very high resistance to flow through different types of porous : Richard J.

Mannheimer. Polymer flooding is one of the most successful chemical EOR (enhanced oil recovery) methods, and is primarily implemented to accelerate oil production by sweep improvement. However, additional benefits have extended the utility of polymer flooding. During the last decade, it has been evaluated for use in an increasing number of fields, both offshore and onshore.

This is a consequence of (1 Cited by: To envisage polymer flow in porous media, the latter may be considered as a simplified contraction-expansion channel.

As polymer molecules enter contractions, they will be compressed and stretched. If the flow is below a critical velocity, deformed polymer molecules have sufficient time to return to Cited by: Additional Physical Format: Online version: Baijal, S.K.

Flow behavior of polymers in porous media. Tulsa, Okla.: PennWell, © (OCoLC) This review describes how microfluidic tools can shed light on the physics underlying the flow of polymer solutions in porous media at high Wi and low Re.

Specifically, microfluidic studies elucidate how steady and unsteady flow behavior depends on pore geometry and solution properties, and how polymer-induced effects impact nonaqueous fluid Cited by: 2. colloids and interfaces Article Polymer Flow in Porous Media: Relevance to Enhanced Oil Recovery Arne Skauge 1,2,*, Nematollah Zamani 3, Jørgen Gausdal Jacobsen 1,3, Behruz Shaker Shiran 3, Badar Al-Shakry 1 ID and Tormod Skauge 2 1 Department of Chemistry, University of Bergen, Allega N Bergen, Norway; [email protected] (J.G.J.); [email protected] (B.A.-S.).

Solutions of high molecular weight polymers exhibit considerable differences in extensional and shear flow behaviors, and the ratio of extensional viscosity to shear viscosity can be as much as times higher.

In case of the flexible polymer solutions through porous media is the increase in flow resistance obtained beyond a critical flow by: 1.Flow of a FENE Fluid in Packed Beds or Porous Media.

The Canadian Journal of Chemical Engineering80 (5), DOI: /cjce Gabriela Grigorescu, Werner-Michael Kulicke. Prediction of Viscoelastic Properties and Shear Stability of Polymers in Solution. , DOI: / by: The modification of the Blake‐Kozeny equation for porous media flow using the power law has been shown to hold for molten polymers as well as for the previous cases for polymer solutions.

The present work extended the correlation of friction factor with Reynolds number an additional three by: